
COP 3330: (Event-driven Programming) Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Building A GUI-based Event Driven Application

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: (Event-driven Programming) Page 2 © Dr. Mark Llewellyn

A Sample GUI

• This set of notes on GUIs and event-driven programming
is devoted exclusively to developing a GUI-based event-
driven program that calculates the wind chill temperature
for a user-specified temperature and wind speed.

– Wind chill is the temperature perceived by a person when taking
into account the actual air temperature and the speed of the win. It
is similar to a more popular term in Florida which is the heat index
that considers the actual air temperature and the humidity (program
assignment #1). You can use the GUI we develop this winter
when you go skiing.

– There are several different formulas available for calculating wind
chill. The one in our program is used by the U.S. National
Weather Service and is only valid for wind speeds in excess of 4
mph.

COP 3330: (Event-driven Programming) Page 3 © Dr. Mark Llewellyn

What the GUI Should Look Like

COP 3330: (Event-driven Programming) Page 4 © Dr. Mark Llewellyn

Components of the GUI

• Compared to a console based application program,

a GUI has many more objects to consider. A GUI

program also has to deal with the interactions of

its graphical components.

– For example, whenever a user clicks the WindChillGUI

calculator run button, the button dispatches a signal.

The GUI must have a listener for that signal that causes

the current temperature and windspeed data entry

values to be obtained, the WindChillGUI to be

calculated, and the result of that computation to be

assigned to the WindChillGUI temperature entry area.

COP 3330: (Event-driven Programming) Page 5 © Dr. Mark Llewellyn

Swing API Classes in the WindChillGUI

Window
Title bar of JFrame instance.

The JFrame contains 8 GUI

elements

This line is a single JTextArea instance

These three lines all

contain a JLabel and a

JTextField instance

JButton instance

COP 3330: (Event-driven Programming) Page 6 © Dr. Mark Llewellyn

UML For WindChillGUI Class

WindChillGUI

-WINDOW_WIDTH: int = 440 //GUI width

-WINDOW_HEIGTH: int = 235 //GUI height

-FIELD_WIDTH: int = 20 //20 characters

-AREA_WIDTH:int = 40 //40 characters

-LAYOUT_STYLE: FlowLayout //layout manager

-LEGEND:string = “This WindChillGUI …greater than 4 mph.”

-window: JFrame //main GUI window

-legendArea: JTextArea //area for the Legend – set 2 rows x AREA_WIDTH

-fahrTag: JLabel //temperature input box label

-fahrText: JTextField //input box for temperature

-windTag: JLabel // wind speed input box label

-windText: JTextField //input box for wind speed

-chillTag: JLabel //wind chill output box label

-chillText: JTextField //output box for wind chill

-runButton: JButton //button to activate calculation of wind chill

<< interface >>

java.awt.event.ActionListener

+ actionPerformed(event: ActionEvent)

COP 3330: (Event-driven Programming) Page 7 © Dr. Mark Llewellyn

Class: WindChillGUI

COP 3330: (Event-driven Programming) Page 8 © Dr. Mark Llewellyn

COP 3330: (Event-driven Programming) Page 9 © Dr. Mark Llewellyn

COP 3330: (Event-driven Programming) Page 10 © Dr. Mark Llewellyn

WindChillGUI Object Attributes & Instance Variables
• A WindChillGUI object has nine attributes and therefore nine instance variables. These

variables are:

– window: references a JFrame representing the window containing the other
components of the GUI;

– legendArea: references a JTextArea representing the multiline program legend.
In this case it is a single line legend.

– fahrTag: references a JLabel representing the label for the data entry area
supplying the temperature.

– fahrText: references a JTextField representing the data entry area supplying the
temperature.

– windTag: references a JLabel representing the label for the data entry area
supplying the windspeed.

– windText: references a JTextField representing the data entry area supplying the
windspeed.

– chillTag: references a JLabel representing the label for the data entry area
giving the windspeed.

– chillText: references a JTextField representing the data entry area giving the
windspeed.

– runButton: references a JButton representing the button that signals a
WindChillGUI calculation request.

COP 3330: (Event-driven Programming) Page 11 © Dr. Mark Llewellyn

WindChillGUI Object Class Constants

• In addition to the instance variables, the WindChillGUI

class also defines the following class constants. Class

constants are common values to which all objects of the

class share access.

– WINDOW_WIDTH: an int value giving the initial width of a GUI;

– WINDOW-HEIGHT: an int value giving the initial height of a GUI;

– AREA_WIDTH: an int value giving the width of a program legend;

– FIELD_WIDTH: an int value giving the width of a data entry area;

– LEGEND: reference to the String representation of a program legend;

– LAYOUT_STYLE: reference to a FlowLayout that manages the layout

of the GUI components within the window. In particular, a
FlowLayout manager arranges the GUI components in a top-to-bottom,

left-to-right manner in the order that they are added to the window;

COP 3330: (Event-driven Programming) Page 12 © Dr. Mark Llewellyn

WindChillGUI

• The definition of program WindChillGUI.java is

markedly different from most of the application programs

that we have seen thus far in the course. The differences

are apparent from the start of the WindChillGUI class

definition.

public class WindChillGUI implements ActionListener{

The keyword indicates that

the class will implement

some interface specifications

ActionListener requires

a method

actionPerformed() be

implemented for

handling GUI action

events

COP 3330: (Event-driven Programming) Page 13 © Dr. Mark Llewellyn

WindChillGUI

• The keyword implements indicates that the class definition

satisfies the specification of the interfaces that follow the

keyword. Recall that informally, an interface is a template

describing the features of a class. Java requires that action

performers for GUI events implement the ActionListener

interface.

• Most event are handled directly by the GUI component with

which the user interacted (e.g., a JTextField object handles

the entering and editing of data in its textbox).

• However, an application-specific response is needed for a run-

button event – the event must initiate the computing and

displaying of the WindChillGUI (in our case). To define its

response for that event, WindChillGUI implements the

ActionListener interface.

COP 3330: (Event-driven Programming) Page 14 © Dr. Mark Llewellyn

Run Button Action-Event Processing

actionPerformed() Method

• Get data entries from temperature

and windspeed data areas

• Compute WindChillGUI according to

formula

•Display result to WindChillGUI data area

GUI : Action Listener

RUN
Action Event

An ActionListener has an

actionPerformed() method that

handles the class-specific activityAction events are

sent to registered

listeners

When the run

button is clicked, it

dispatches an

action event

COP 3330: (Event-driven Programming) Page 15 © Dr. Mark Llewellyn

WindChillGUI Class

• The WindChillGUI class definition has four sections.

– The first section specifies a collection of private class constants
and instance variables that are used elsewhere in the definition.

– The second section defines the WindChillGUI default constructor.
The constructor configures the instance variable GUI components
so that they are ready to perform the WindChillGUI computation
upon the request of the user.

– The third section defines the event handler method
actionPerformed(). Implementing this event handling
method is the only requirement of the ActionListener

interface. The interface requires the method have the form:

public void actionPerformned(ActionEvent e)

where class ActionEvent is part of the standard

java.awt.event. The ActionEvent class is the basis for
representing all swing windowing events.

COP 3330: (Event-driven Programming) Page 16 © Dr. Mark Llewellyn

WindChillGUI Class

– The fourth section defines the main method, the

application’s entry point. With GUI-based programs, the

main method is often trivial to implement. For example, in

this program it defines only a new instance of the class’s

GUI.

WindChillGUI = new WindChillGUI();

COP 3330: (Event-driven Programming) Page 17 © Dr. Mark Llewellyn

Class Constants and Instance Variables

• The class constants and instance variables section of the
WindChillGUI class begins with the definitions of 6 constants. These
constants are used in configuring the various components of the
WindChillGUI.

– Remember: You can tell these definitions are specifying class constants
since they use the final and static modifiers.

• Constants WINDOW_WIDTH and WINDOW_HEIGHT are the initial
dimensions of the GUI.

• Constant FIELD_WIDTH is the width of the text boxes used for the
inputs and outputs of the computation performed by the GUI.

• Constant AREA_WIDTH is the width of the text box for displaying the
WindChillGUI legend at the top of the GUI.

private static final int WINDOW_WIDTH = 425; //pixels

private static final int WINDOW_HEIGHT = 235; //pixels

private static final int FIELD_WIDTH = 20; //characters

private static final int AREA_WIDTH = 40; //characters

COP 3330: (Event-driven Programming) Page 18 © Dr. Mark Llewellyn

Illustration of Changing Window Parameters

WINDOW_WIDTH = 425, WINDOW_HEIGHT = 235

WINDOW_WIDTH = 350, WINDOW_HEIGHT = 185

Notice that the

window is not

large enough

now to fit the

legend in one

line nor to see

the output or the

run button!

COP 3330: (Event-driven Programming) Page 19 © Dr. Mark Llewellyn

Illustration of Changing Window Parameters

WINDOW_WIDTH = 600, WINDOW_HEIGHT = 185

WINDOW_WIDTH = 150

WINDOW_HEIGHT = 300

Notice that the window is

not wide enough to even

completely display the

input text boxes nor the

entire legend.

Notice that

increasing the width

of the JFrame

causes the GUI

components to flow

upward to fill the

available space

COP 3330: (Event-driven Programming) Page 20 © Dr. Mark Llewellyn

Class Constants and Instance Variables (cont.)

• The FlowLayout constant LAYOUT_STYLE describes
how the components of the GUI are to be arranged in the
window. In particular, a FlowLayout manager arranges
GUI components in a top-to-bottom, left-to-right
arrangement in the order in which they are added to the
window.

• If a window does not specify a layout manager, then the
last component added to the window occupies the entire
window. The next slide illustrates what our
WindChillGUI would look like without the specification of
a layout manager.

private static final FlowLayout LAYOUT_STYLE =

new FlowLayout();

COP 3330: (Event-driven Programming) Page 21 © Dr. Mark Llewellyn

Illustration of Changing Window Parameters

WINDOW_WIDTH = 425, WINDOW_HEIGHT = 235

No Layout Manager Specified

COP 3330: (Event-driven Programming) Page 22 © Dr. Mark Llewellyn

Class Constants and Instance Variables (cont.)

• The last constant definition is for String constant LEGEND
representing the text of the program legend.

• Following the class constants come the instance variable
definitions. These definitions initialize the instance
variables for each new WindChillGUI object. Each
WindChillGUI object has its own copy of the instance
variables.

private static final String LEGEND = " This WindChillGUI "

+ "calculator is intended for wind speeds greater "

+ "than 4 mph.";

COP 3330: (Event-driven Programming) Page 23 © Dr. Mark Llewellyn

Class Constants and Instance Variables (cont.)

• The first instance variable is the JFrame variable

window. A JFrame acts as a container that holds the

components of the GUI. A JFrame is similar in form to

the other windows on your desktop (e.g., it has a frame and

a title bar) and can be manipulated like other windows

(e.g., minimized, maximized, and moved).

• Variable window references a new JFrame window

object. The JFrame constructor titles the new window

using its String parameter “WindChillGUI Calculator”.

//window for GUI

private JFrame window = new JFrame("WindChillGUI Calculator");

COP 3330: (Event-driven Programming) Page 24 © Dr. Mark Llewellyn

Class Constants and Instance Variables (cont.)

• The second instance variable is the JTextArea variable
legendArea. It references a new JTextArea object that acts as a
multiline text box (in our case only a single line). The JTextArea

constructor creating the object takes three parameters.

– The first parameter is the string to be displayed in its text box, which in
this case is the String referenced by LEGEND.

– The second and third parameters are the dimensions of the new text box –
the number of lines and the number of characters per line. In this case two
lines can be displayed each with AREA_WIDTH number of characters
per line

//legend

private JTextArea legendArea =

new JTextArea(LEGEND, 2, AREA_WIDTH);

COP 3330: (Event-driven Programming) Page 25 © Dr. Mark Llewellyn

Class Constants and Instance Variables (cont.)

• There is a pair of instance variables associated with each of the

following: the input temperature, the input windspeed, and the
WindChillGUI output. Each pair defines two new objects – a JLabel

and a JTextField. The label clues the user as to what information

is needed or supplied by the GUI, and the text entry area serves as the

conduit between the user and the program.

• For example,

//user entry area for temperature

private JLabel fahrTag = new JLabel("Fahrenheit Temperature");

private JTextField fahrText = new JTextField(FIELD_WIDTH);

Fahrenheit Temperature

A JLabel is

noneditable by

the user

By default the text field of

a JTextField is editable by

the user.

COP 3330: (Event-driven Programming) Page 26 © Dr. Mark Llewellyn

Alignment of the Label and Text Entry Areas

• In order to align the three labels and text entry pairs one

after the other in the window, blanks are used to make the

windspeed and WindChill labels the same length as the

temperature label.

– On systems where the default label and entry area font is a

monospaced font (i.e., all characters have the same width like

Courier) this is fairly easy to do by simply counting characters.

– On systems where the default label and entry area font is

nonmonospaced (the more common situation), determining the

number of padding blanks necessary to align labels can be a trial

and error process.

COP 3330: (Event-driven Programming) Page 27 © Dr. Mark Llewellyn

The runButton Instance Variable

• The last of the instance variables in our WindChillGUI is
the runButton.

• The JButton constructor creating the object expects a
single parameter that specifies the button’s label. In this
case, the new button has the label “RUN”.

• With these class constants and instance variables, the
WindChillGUI default constructor configures and displays
the GUI so that whenever its run button is clicked, the
actionPerformed() method first accesses the data
entry areas that are referenced by fahrText and
windText so that it can compute the associated
WindChill. Method actionPerformed() then
displays the WindChill in the entry area referenced by
chillText.

COP 3330: (Event-driven Programming) Page 28 © Dr. Mark Llewellyn

Construction of the GUI

• When a constructor begins execution, it configures, as
necessary, the newly initialized copies of the instance
variables for the object under construction. For the
WindChillGUI, all nine instance variables require
manipulation by the constructor.

• The WindChillGUI constructor begins by sizing the
window that will hold the GUI. For this purpose, the
constructor signals the window through JFrame instance
method setSize(). Method setSize() expects two
parameters giving the width and height of the new window
in pixels.

window.setSize(WINDOW_WIDTH, WINDOW_HEIGHT);

COP 3330: (Event-driven Programming) Page 29 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• Next, the constructor configures the program to terminate
when the window closes. This is done by the constructor
invoking the JFrame instance method
setDefaultCloseOperation().

• The parameter JFrame.EXIT_ON_CLOSE is a JFrame
class constant whose value indicates that the program is to
be terminated when this JFrame is closed. Note:
JFrame.EXIT_ON_CLOSE should only be used in
applications not applets.

– The default case is to HIDE_ON_CLOSE. Also available are
DO_NOTHING_ON_CLOSE and DISPOSE_ON_CLOSE all of
which are inherited through the interface WindowConstants.

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

COP 3330: (Event-driven Programming) Page 30 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• Next, the constructor configures the legend for the GUI.
Variable legendArea is associated with the
JTextArea object that holds the program’s legend.

• Since the user should not be able to modify the legend, the
associated JTextArea object is signaled through its
instance method setEditable() to make its text field
noneditable.

• Method setEditable() expects a single boolean value
as its parameter. If the parameter value is false, then the
associated JTextArea is noneditable. If the parameter
value is true, then the associated JTextArea is editable.

legendArea.setEditable(false);

COP 3330: (Event-driven Programming) Page 31 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• The reason the legend area should be uneditable is

shown in the figure below.

The user can edit

the legend area

just like any other

data area if

setEditable(true)

Notice the cursor

bar since the field

is editable

COP 3330: (Event-driven Programming) Page 32 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• The additional configuring done with the legendArea

ensures that the legend is displayed properly within its

entry area. By default, a JTextArea object does not

wrap its text. To signal that a wrapping is desired, its

method setLineWrap() is invoked.

• Method setLineWrap() expects a single boolean value

as its parameter. A value of false indicates that its text is

not to be wrapped; a value of true indicates that its text is

to be wrapped.

legendArea.setLineWrap(true);

COP 3330: (Event-driven Programming) Page 33 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• Simply requesting line wrapping is insufficient. The default line
wrapping style is to break up text only when a text-field line is
completely full. This style can cause a word to split over two
lines.

• To ensure line wrapping occurs only a word boundaries, a
JTextArea object is signaled through its method
setWrapStyleWord(). This is illustrated in the next slide.

• Method setWrapStyleWord() expects a single boolean
value as its parameter. A value of true indicates that line
wrapping is to occur only at word boundaries; false will wrap
the text whenever a text-field line is full.

legendArea.setWrapStyleWord(true);

COP 3330: (Event-driven Programming) Page 34 © Dr. Mark Llewellyn

Construction of the GUI (cont.)
In this case setLineWrap(false)

causes the too long legend to

disappear off both ends of the

window.

In this case setLineWrap(true)

allows the legend to wrap into a

second line, but

setWrapStyle(false) allows the

wrapping to occur at whatever

point the textfield becomes full

and not necessarily at a word

boundary.

COP 3330: (Event-driven Programming) Page 35 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

In this case setLineWrap(true)

and setWrapStyleWord(true)

causes the too long legend to

wrap into 3 separate lines of

legend with breaks only a word

boundaries.

COP 3330: (Event-driven Programming) Page 36 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• The background color of the legend area can be altered to match

the background color of the window (the default background

color of a JTextArea is white). To signal a JTextArea

background color change, its method setBackground() is

invoked with a parameter specifying the desired color.

• To match the two background colors, the color of the JFrame

is obtained using its instance method getBackground().

legendArea.setBackground(window.getBackground());

COP 3330: (Event-driven Programming) Page 37 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• The JTextField associated with chillText should be
made noneditable – it is the program that supplies the value not
the user.

• The prohibition regarding the editing of the text field applies
only to the user and not to the object itself.

• Making it noneditable, causes Java to change its background
color from the standard JTextField background color
(remember the default color is white). To override the color
change, JTextField method setBackground() is
invoked.

chillText.setEditable(false);

//chillText.setBackground(Color.BLUE);

COP 3330: (Event-driven Programming) Page 38 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

chilltext.setBackground(Color.BLUE)

causes the text box for the result to

appear in a nonstandard color.

chilltext.setBackground(Color.RED)

causes the text box for the result to

appear in a nonstandard color.

COP 3330: (Event-driven Programming) Page 39 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• The standard colors available in Java for painting text

boxes and objects can be found in the java.awt.Color

class.

• The colors are: BLACK, BLUE, CYAN, DARKGRAY,

GRAY, GREEN, LIGHTGRAY, MAGENTA, ORANGE,

PINK, RED, WHITE, and YELLOW.

• Opaque and transparent shading is also possible.

• There are also constructors in this class to create any color

within the RGB scheme of 0-255 (See GUIs – Part 1

notes).

COP 3330: (Event-driven Programming) Page 40 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• Next step for the constructor is to set the action performer for a
JButton using JButton instance method
addActionListener().

• The parameter to addActionListener() specifies the
object whose method actionPerformed() processes the
clicking of the run button. The object in question is the GUI
under construction, i.e., the object currently being configured by
the WindChillGUI default constructor method. The parameter
to addActionListener() is this. (Remember that the
keyword this is the Java technique for referencing the object
being manipulated by a constructor or an instance method.)

runButton.addActionListener(this);

COP 3330: (Event-driven Programming) Page 41 © Dr. Mark Llewellyn

Construction of the GUI (cont.)
• It may seem a bit confusing, but the GUI components are not

added directly to the JFrame. Instead they are added to a
container inside that frame. As its name implies, a JFrame is a
frame. The frame includes the title bar and border edging that
can be manipulated like other windows under the operating
system.

• Inside the perimeter of the frame is a content pane. The content
pane is the container that directly holds the other components of
the GUI. The type of the content pane is awt class
Container.

• To gain access to the content pane, the WindChillGUI
constructor uses JFrame method getContentPane() to
initialize Container variable c.

Container c = window.getContentPane();

COP 3330: (Event-driven Programming) Page 42 © Dr. Mark Llewellyn

Construction of the GUI (cont.)

• With variable c, the layout manager can be set for the content

pane using Container method setLayout().

• To complete the configuration of the GUI, the eight GUI

components are added to the content pane using Container

method add().

c.setLayout(LAYOUT_STYLE);

c.add(legendArea);

c.add(fahrTag);

c.add(fahrText);

c.add(windTag);

c.add(windText);

c.add(chillTag);

c.add(chillText);

c.add(runButton);

COP 3330: (Event-driven Programming) Page 43 © Dr. Mark Llewellyn

Construction of the GUI (cont.)
• Once the configuration is complete, it is appropriate to make the

window visible.

• Up to this point, the WindChillGUI constructor has set up the

graphical components that make up its interface, but it has not

displayed them. To do so, the constructor uses JFrame method

setVisible(). (Inherited from the

java.awt.Component class.)

window.setVisible(true);

COP 3330: (Event-driven Programming) Page 44 © Dr. Mark Llewellyn

Construction of the GUI (cont.)
• By default, JTextArea, JLabel, JTextField,

and JButton instances are visible once the window in
which they have been placed is made visible.

• Thus, setting their visibility individually is not necessary,
although you have the capability of turning them on only
after certain conditions have occurred, if so desired.

• The GUI is now displayed as the constructor completes.

• Before we look at event handling and
actionPerformed(), we’ll see the final configuration
of our GUI once the constructor has completed.

COP 3330: (Event-driven Programming) Page 45 © Dr. Mark Llewellyn

The Final GUI

COP 3330: (Event-driven Programming) Page 46 © Dr. Mark Llewellyn

Event Handling and actionPerformed()

• Implementing the button action performer method
actionPerformed() is relatively straightforward.

– When invoked in response to the user selecting the run button, the

performer first gets the user inputs from the text fields associated with
JTextField variables fahrText and windText.

– Method actionPerformed() uses the two values to compute the

associated WindChill. The WindChill value is then used to set the text
field associated with the variable chillText.

• A JTextField has a method getText() that returns a copy of the

text in its text field in String form. The String representation can

be converted to a numeric representation using Double class method

parseDouble().

String response1 = fahrText.getText();

double t = Double.parseDouble(response1);

COP 3330: (Event-driven Programming) Page 47 © Dr. Mark Llewellyn

Event Handling and actionPerformed()(cont.)

• The action performer uses a similar code segment to
initialize a double variable v to represent the windspeed.

• Given v and t, a double variable
windchillTemperature can be defined and properly
initialized. To translate the WindChill formula:

into a valid Java expression, the API Math provides a class
method sqrt() for calculating square root values.

String response2 = windText.getText();

double v = Double.parseDouble(response2);

   4.91v25.081.5v71.34.91t081.0tw c 

double windchillTemperature = 0.081 * (1 - 91.4)

* (3.71 * Math.sqrt(v) + 5.81 - 0.25*v) + 91.4;

COP 3330: (Event-driven Programming) Page 48 © Dr. Mark Llewellyn

Event Handling and actionPerformed()(cont.)

• Since the variable windchillTemperature is a

double, its value can add a significant number of digits

after the decimal point. These digits are uninteresting to

most users. Therefore, the action performer uses the Math

class method round() to produce the integer values

closest to the original value.

– Method round() returns a long value, so the cast is necessary

to convert that value into a int value as Java does not implicitly

narrow a long value to an int.

int perceivedTemperature =

(int)Math.round(windchillTemperature);

COP 3330: (Event-driven Programming) Page 49 © Dr. Mark Llewellyn

Event Handling and actionPerformed()(cont.)

• To display the WindChill, the action performer converts the int value
to a String representation using the String class method
valueOf(). The method expects a single int value as its
parameter and returns a String version of the number.

• The action performer uses that string value as a parameter to
JTextField method setText(). The method updates the text
box associated with variable chillText. In particular, by invoking:

the correct WindChill output is displayed.

• The displaying of the WindChill computation finishes the event
handling for the button-clicking event. The program then continues
with the even dispatching loop until another action event occurs or the
program is ended.

String output = String.valueOf(perceivedTemperature);

chillText.setText(output);

COP 3330: (Event-driven Programming) Page 50 © Dr. Mark Llewellyn

Method Main()

• Method main() of the WindChillGUI program is trivial to implement. The method

just defines a new instance of WindChillGUI.

• No other work is required, because the constructor handles the building and displaying
of the GUI and the actionPerformed() method handles the user interaction.

• If desired, method main() can be modified to create multiple WindChillGUIs. Each

of the WindChillGUI calculators would be displayed simultaneously. This is

illustrated in the next slide (I did 5 instances and separated them since they each

display in the middle of the screen the instances are stacked one on top of the other).

public static void main(String[] args) {

new WindChillGUI();

}

public static void main(String[] args) {

WindChillGUI gui1 = new WindChillGUI();

WindChillGUI gui2 = new WindChillGUI();

}

COP 3330: (Event-driven Programming) Page 51 © Dr. Mark Llewellyn

COP 3330: (Event-driven Programming) Page 52 © Dr. Mark Llewellyn

Conclusion

• With this set of notes you now have enough information to

construct your own GUI-based even-driven applications.

• One of the difficulties of working with a language like

Java is knowing what sort of classes and methods are

available for you to use in your programs without needing

to write them yourself. The simplest way to do this is to

become familiar with the language. The following website

will help immensely: http://java.sun.com

• As a further practice problem – go back to your very first

program for this course (the heat index calculator) and

rework it into a GUI-based event-driven application.

http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/

